
- Why aren’t there more quantum 
algorithms ?

- Quantum Programming Languages

By : Amanda Cieslak and Ahmana Tarin



Why aren’t there 
more quantum 

algorithms?

● there are only a few problems 
for which quantum computers 
can offer exponential speed-up 
over classical computers (Shor’
s, Grover’s)

● difficult to go about finding a 
quantum algorithm compared to 
classical algorithms because 
quantum computers are very 
different than classical 
computers, so the approach to 
an algorithm is very different 
too.



Unique Problems

● Researchers work and look for quantum algorithms that solve 
problems that are not known to be solved classically in polynomial 
time, which is difficult since to find such a problem we would assume 
quantum computers can not solve NP-complete problems in faster 
exponential time as opposed to classical computers. (Superpolynomial 
speed-up cannot arise from problems that have polynomial-time classical 
algorithms, like P AND NP).

● In order to achieve super-polynomial speed-up, we would need to find 
a problem which is neither in P nor is NP-complete. Due to the success 
of classical algorithms, there are few natural problems that fit these 
requirements. 



● most of the focus in classical computing has been on 
classifying problems as polynomial time or as NP-hard, 
which has left few well-studied problems outside that are 
not known to be outside of these two classes.

● Also searching for super-polynomial speed-up is difficult, 
and what might be a more useful approach is to try to find 
faster quantum algorithms for problems already known to 
be classically solvable in polynomial time. This provides 
polynomial factor speed-ups, which can lead to finding 
other new techniques for designing quantum algorithms.



Applying quantum physics

● computer scientists have less experience with quantum 
mechanics in comparison to physicists. In order for a 
quantum algorithm to provide speed-up over a classical 
computation it must use interference, which is a concept 
less known by computer scientists.



Quantum Programming Languages

● A programming language for quantum hardware to help us control the 
quantum computing device and implement a quantum algorithm

● To provide tools for researchers to understand how quantum computation 
works and how to reason formally about quantum algorithms

● Classical Programming : DATA + CONTROL = PROGRAMMING

● Quantum Programming: QUANTUM DATA + CONTROL = QUANTUM 
PROGRAMMING

● This gives us the option to manipulate quantum data without having to have 
the knowledge of the underlying operating system and quantum hardware



Architectures for Quantum Computing

1. Quantum Circuits:
a. Input Device - where we can feed in quantum data
b. Basic Gates - quantum circuits
c. Device to measure - result is a sequence of bits that can be 

stored/manipulated later
2. Quantum Turing Machines:

a. A quantum analog of Turing Machines
b. Convenient for discussing quantum complexity, but not a design for a 

programming language
3. Quantum Random Access Memory Model (QRAM):

a. A classical computer, playing the role of the master
b. A quantum computer device, that can be accessed by the master 

computer on request



QRAM

● Idea: A programmer writes classical code in a classical language, but when 
they need the extra quantum power, they can add a few lines of quantum 
assembler code. 

● No need to know how qubits are physically stored, initialized, manipulated, or 
measured. 

● Quantum Hardware Interface, QHI, will translate assembler commands issued 
by the master into explicit actions performed by the quantum device. 



1. A set of quantum data storage registers
a. Quantum Register: An interface to an addressable sequence of qubits. Each q-register as a 

unique identifier by which it is referred. 

b. The first thing to do is ask the quantum device through the quantum hardware interface to 

initialize a sequence of qubits

2. Utilities that apply operations on the storage

● After the quantum register has been initialized and manipulated, the 
programmer can issue a command that will measure selected portions. This 
will return a classical value to the main program. 

Quantum Processor



Quantum Programming

INITIALIZE R 2

● allocated a 2 qubit register names R and initializes it to |00>

U TENSOR H H 

● creates a unitary matrix U of size 4 x 4

APPLY U R

● applies U to R

MEASURE R RES

● measures the q-register R and stores the result in the bit array RES



● Imperative Programming: program that is mainly a sequence of commands with 
flow control statements. C, Python, Java

● Logical Programming: a program is a specification of properties and relations 
in a fragment of first-order logic

● Functional Programming: specifications of a function. The program will be 
provided with an acceptable value for the function and it will compute the 
return value. (QUANTUM DATA AND CLASSICAL CONTROL)

Languages



● Imperative Quantum Programming Languages:
○ QCL (Quantum Computation Language): high level, architecture independent programming 

language for quantum computers, with a syntax derived from classical procedural languages 

like C or Pascal. This allows for the complete implementation and simulation of quantum 

algorithms (including classical components) in one consistent formalism.
○ Standard Library includes: 

■ controlled-not with many target qubits,
■ Hadamard operation on many qubits,
■ parse and controlled phase.

● Functional Quantum Programming Languages
○ QFL and QPL: QFC and QPL are two closely related quantum programming languages defined 

by Peter Selinger. They differ only in their syntax. 
○ These languages have classical control flow but can operate on quantum or classical data.

https://en.wikipedia.org/wiki/Hadamard_operation
https://en.wikipedia.org/wiki/Hadamard_operation

